

COURSE OUTLINE: ELR309 - NUMERIC & NETWK ANAL

Prepared: Juhani Paloniemi

Approved: David Orazietti, Dean, Environment, Technology, and Business

Course Code: Title	ELR309: NUMERICAL AND NETWORK ANALYSIS		
Program Number: Name	4029: ELECTRICAL TY-PROCES		
Department:	ELECT./INSTRUMENTATION PS		
Semesters/Terms:	21W		
Course Description:	An in-depth study of A.C. and D.C. circuits using network theorems, differential equations and Laplace transforms.		
Total Credits:	7		
Hours/Week:	5		
Total Hours:	75		
Prerequisites:	ELR109, MTH577		
Corequisites:	There are no co-requisites for this course.		
Vocational Learning Outcomes (VLO's) addressed in this course: Please refer to program web page for a complete listing of program outcomes where applicable.	4029 - ELECTRICAL TY-PROCES VLO 2 Analyze and solve complex technical problems related to electrical systems by applying mathematics and science principles.		
Essential Employability Skills (EES) addressed in this course:	EES 3 Execute mathematical operations accurately. EES 4 Apply a systematic approach to solve problems. EES 5 Use a variety of thinking skills to anticipate and solve problems.		
Course Evaluation:	Passing Grade: 50%, D A minimum program GPA of 2.0 or higher where program specific standards exist is required for graduation.		
Other Course Evaluation & Assessment Requirements:	Grade Definition Grade Point Equivalent A+ 90 - 100% 4.00 A 80 - 89% B 70 - 79% 3.00 C 60 - 69% 2.00 D 50 - 59% 1.00 F (Fail)49% and below 0.00 CR (Credit) Credit for diploma requirements has been awarded. S Satisfactory achievement in field /clinical placement or non-graded subject area. U Unsatisfactory achievement in field/clinical placement or non-graded subject area.		

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur remotely either in whole or in part in the 2020-2021 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

ELR309: NUMERICAL AND NETWORK ANALYSIS

	additional time to complete the NR Grade not reported to Reg		
Books and Required Resources:	Network Analysis for ELR309 Publisher: AK Graphics - Saul	, , ,	
Course Outcomes and Learning Objectives:	Course Outcome 1	Learning Objectives for Course Outcome 1	
	Analyze a resistive circuit using Nodal analysis and Mesh analysis.	1.1 Using a matrix solution of the network equations, determine the voltages and currents in the elements of a resistive circuit.	
	Course Outcome 2	Learning Objectives for Course Outcome 2	
	Analyze First-Order circuits using differential equations.	2.1 Construct and solve a differential equation for a network with resistors and capacitors. 2.2 Construct and solve a differential equation for a network with resistors and inductors.	
	Course Outcome 3	Learning Objectives for Course Outcome 3	
	3. Analyze Second-Order circuits using differential equations.	Construct and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. 3.1 Apply the appropriate analysis techniques to Second-Order circuits with excitation by: 1. initial conditions, 2. a source, and 3. initial conditions and a source. 3.2 Find complementary, particular and complete solutions. 3.3 Utilize the appropriate solution forms for the under-damped case, critically-damped case and over-damped case. 3.4 Correlate the regions of a root-locus diagram to degree of damping, and the values of R, for a series circuit and a parallel circuit.	
	Course Outcome 4	Learning Objectives for Course Outcome 4	
	4. Analyze First-Order and Second-Order circuits using Laplace transforms.	 4.1 Define the Laplace transform. 4.2 Derive, from first principles, the Laplace transforms of basic time-based functions. 4.3 Apply Laplace transforms to a circuit's differential equation. 4.4 Solve for the desired variable in the Laplace domain. 4.5 Re-transform solutions from the Laplace domain into the time domain. 4.6 Analyze a circuit using the network transformation technique when appropriate. 	
Evaluation Process and	Evaluation Type Evaluation	valuation Weight	
Grading System:	Tests (4 evenly weighted) 10		
Date:	September 2, 2020		
Addendum:	Please refer to the course outline addendum on the Learning Management System for further information.		

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur remotely either in whole or in part in the 2020-2021 academic year.

SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

In response to public health requirements pertaining to the COVID19 pandemic, course delivery and assessment traditionally delivered in-class, may occur remotely either in whole or in part in the 2020-2021 academic year.			
SAULT COLLEGE 443 NORTHERN AVENUE SAULT STE. MARIE, ON P6B 4J3, CANADA 705-759-2554			

ELR309 : NUMERICAL AND NETWORK ANALYSIS Page 3